Therapeutic Response in Pediatric Neuromyelitis Optics Spectrum Disorder

Raffaella Pizzolato Umeton, MD MMSc
Partners Pediatric Multiple Sclerosis Center
Massachusetts General Hospital, Boston

Raffaella Pizzolato Umeton, MD, MMSc; Michael Waltz, MAS; Greg Aaen, MD; Leslie Benson, MD; Mark Gorman, MD; Manu S. Goyal, MD, MS; Jennifer S. Graves, MD, PhD; Yolanda Harris, PhD, MSN, CRNP, CPNP-AC; Lauren Krupp, MD; Timothy Lotze, MD; Soe Mar, MD; Jayne Ness, MD; Mary Rensel, MD; Teri Schreiner, MD, MPH; Jan-Mendelt Tillema, MD; Shelly Roalstad, MS; Moses Rodriguez, MD, John Rose, MD; Emmanuelle Waubant, MD; Bianca Weinstock-Guttman, MD; T. Charles Casper, PhD; Tanuja Chitnis, MD for the U.S. Network of Pediatric MS Centers
This study was sponsored by the Sumaira Foundation. The US NPMSC is sponsored by the National MS Society.

Dr. Raffaella Pizzolato Umeton, Dr. Yolanda Harris, Dr. Shelly Roalstad, Dr. Moses Rodriguez, Mr. Michael Waltz; Dr. Soe Mar, Dr. T. Charles Casper report no disclosures relevant to the manuscript.

Dr. Gregory Aaen has participated in clinical trials funded by Biogen

Dr. Leslie Benson has received funding for research unrelated to this work for a Biogen sponsored clinical trial, and Boston Children’s Hospital office of faculty development grant. She has also acted as a paid consultant to the national Vaccine Injury Compensation Program.

Dr. Mark Gorman has participated in clinical trials funded by Novartis and Biogen, and received research funding from Pfizer.

Dr. Manu S. Goyal has received fees for providing consultations on medicolegal cases related to neuroradiology and has IBM stock.

Dr. Jennifer S. Graves has received recent grant and clinical trial support from the National MS Society, Race to Erase MS, UCSF CTSI RAP program, Biogen, and Genentech. She has received honoraria from Biogen and Genzyme for non-promotional trainee education events. She has received personal fees from Novartis and Celgene.

Dr. Lauren Krupp received payments as a consultant for Biogen, Novartis, Everyday Health, Genentech, Gerson Lehman, Sanofi; served as an uncompensated consultant for Celgene, and received licensing payments from biotechnology and pharmaceutical companies for the fatigue severity scale.

Dr. Timothy Lotze has served as a consultant/speaker for Biogen.

Dr. Jayne Ness

Dr. Mary Rensel has served as a consultant/speaker for Biogen, Teva, Genzyme, and Novartis; research support from Medimmune.

Dr. Teri Schreiner has participated in trials funded by Biogen and MSDx.

Dr. Jan-Mendelt Tillema

Dr. John Rose has research support from NMSS, NIH, Guthy Jackson Foundation, PCORI, Teva Neuroscience, Biogen and VA.

Dr. Emmanuelle Waubant has participated in multicenter clinical trials funded by Genentech and Biogen. She has current support from the NIH, NMSS, PCORI, and Race to Erase MS.

Dr. Bianca Weinstock-Guttman has served as a consultant/speaker for Biogen, Teva, Novartis, Genzyme, Genentech, and EMD Serono; research support from Biogen, Teva, Novartis, Genentech, and EMD Serono.

Dr. Tanuja Chitnis is an advisory board member for Biogen, Novartis, and Sanofi-Genzyme; has received research support from Biogen, Novartis, Octave, Serono and Verily; has participated in clinical trials sponsored by Sanofi-Genzyme and Novartis.
Background: Pediatric NMOSD

• Neuromyelitis optica spectrum disorder (NMOSD) is a rare autoimmune condition which can lead to significant disability.
• AQP4-IgG is a serum biomarker found in approximately 80% of patients, and a proportion of the remaining 20% may be accounted for by MOG-IgG and double seronegative (DS).
• Approximately 4% of the NMOSD cases are pediatric onset.
• At present, there are limited studies that aim at guiding physicians in their treatment choices for NMOSD in children.
Objectives

• To evaluate the effect of different disease modifying therapies (DMT) with respect to attack prevention in children with NMOSD.
Design/Methods

• Multi-center observation cohort study that included 12 clinical centers participating in the US Network of Pediatric MS Centers.

• Children aged 18-year-old or younger diagnosed with NMOSD diagnostic criteria and classified via serostatus as AQP4+, MOG+, or DS.

• Clinical data, including demographics, attack details, type of initial DMT (rituximab, mycophenolate mofetil, azathioprine, IVIg) and neurological visit data were extracted from charts, centrally collected in a database, and analyzed.

• Treatment response in the three serostatus subgroups was evaluated.

• Effect of DMTs on annualized relapse rate (ARR) was assessed by negative binomial regression.
Results: Baseline characteristics

- 111 pediatric patients with NMOSD

<table>
<thead>
<tr>
<th>Demographics of analysis population</th>
<th>AQP4+ (N = 80)</th>
<th>MOG+ (N = 10)</th>
<th>Double Seronegative (N = 14)</th>
<th>Unknown (N = 7)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age at time of first event: Mean (SD)</td>
<td>10.9 (3.9)</td>
<td>8.0 (4.3)</td>
<td>9.3 (4.6)</td>
<td>11.0 (4.0)</td>
<td>0.165¹</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.464²</td>
</tr>
<tr>
<td>Male</td>
<td>10 (13%)</td>
<td>3 (30%)</td>
<td>3 (21%)</td>
<td>1 (14%)</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>70 (88%)</td>
<td>7 (70%)</td>
<td>11 (79%)</td>
<td>6 (86%)</td>
<td></td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.478²</td>
</tr>
<tr>
<td>White</td>
<td>33 (42%)</td>
<td>7 (70%)</td>
<td>6 (46%)</td>
<td>2 (29%)</td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>37 (47%)</td>
<td>2 (20%)</td>
<td>5 (38%)</td>
<td>3 (43%)</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>8 (10%)</td>
<td>1 (10%)</td>
<td>2 (15%)</td>
<td>2 (29%)</td>
<td></td>
</tr>
<tr>
<td>Ethnicity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.653²</td>
</tr>
<tr>
<td>Hispanic or Latino</td>
<td>15 (20%)</td>
<td>1 (11%)</td>
<td>3 (21%)</td>
<td>0 (0%)</td>
<td></td>
</tr>
<tr>
<td>Not Hispanic or Latino</td>
<td>61 (80%)</td>
<td>8 (89%)</td>
<td>11 (79%)</td>
<td>5 (100%)</td>
<td></td>
</tr>
<tr>
<td>First MS agent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.362²</td>
</tr>
<tr>
<td>azathioprine</td>
<td>12 (16%)</td>
<td>1 (13%)</td>
<td>1 (7%)</td>
<td>1 (17%)</td>
<td></td>
</tr>
<tr>
<td>mycophenolate mofetil</td>
<td>12 (16%)</td>
<td>1 (13%)</td>
<td>3 (21%)</td>
<td>0 (0%)</td>
<td></td>
</tr>
<tr>
<td>rituximab</td>
<td>32 (42%)</td>
<td>1 (13%)</td>
<td>3 (21%)</td>
<td>2 (33%)</td>
<td></td>
</tr>
<tr>
<td>IVIG</td>
<td>6 (8%)</td>
<td>3 (38%)</td>
<td>3 (21%)</td>
<td>2 (33%)</td>
<td></td>
</tr>
</tbody>
</table>

¹ Kruskal-Wallis test.
² Chi-squared test.
Annual Relapse Rate

<table>
<thead>
<tr>
<th>Therapy</th>
<th>First-line treatments</th>
<th></th>
<th>First-line treatments</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unadjusted ARR</td>
<td>N</td>
<td>Unadjusted ARR</td>
<td>N</td>
</tr>
<tr>
<td>Azathioprine</td>
<td>0.73 (0.27, 2.00)</td>
<td>15</td>
<td>0.76 (0.24, 2.39)</td>
<td>12</td>
</tr>
<tr>
<td>Mycophenolate mofetil</td>
<td>0.40 (0.18, 0.89)</td>
<td>16</td>
<td>0.43 (0.17, 1.07)</td>
<td>12</td>
</tr>
<tr>
<td>Rituximab</td>
<td>0.25 (0.13, 0.46)</td>
<td>38</td>
<td>0.25 (0.13, 0.48)</td>
<td>32</td>
</tr>
<tr>
<td>IVIG</td>
<td>0.56 (0.26, 1.20)</td>
<td>14</td>
<td>0.63 (0.26, 1.55)</td>
<td>6</td>
</tr>
</tbody>
</table>

*Note: there were 7/111 who were untreated for first-line treatments
*Note: there were 4/80 who were untreated for first-line treatments for the AQP4 subset
Strengths and limitations

- **Strengths:**
 - Multicenter data from large cohort of pediatric NMOSD patients
 - Data collected over the last 10 years
 - Comparative effectiveness of initial treatment

- **Limitations:**
 - Lack of information about short term safety, tolerability and side effects
 - Cannot exclude residual confounding
Conclusions

• This retrospective study showed that rituximab is associated with a lowered annual relapse rate in pediatric NMOSD and in particular in the AQP4+ subgroup.
Acknowledgements

Massachusetts General Hospital
Tanuja Chitnis

Boston Children’s Hospital
Leslie Benson
Mark Gorman

University of Utah Data coordinating and Analysis Center
T. Charles Casper
Michael Waltz
Shelly Roalstad
John Rose

Texas Children’s Hospital
Timothy Lotze

UCSF
Emmanuelle Waubant

UCSD
Jennifer Graves

Cleveland Clinic
Mary Rensel

Mayo Clinic
Moses Rodriguez
Jan-Mendelt Tillema

University of Colorado
Teri L Schreiner

State University of New York at Buffalo
Bianca Weinstock-Guttman

Loma Linda University
Gregory Aaen

New York University Langone Medical Center
Lauren Krupp

University of Alabama at Birmingham
Jayne Ness
Yolanda Harris