Pattern of Cognitive Dysfunction Associated with Neuromyelitis Optica (NMO) and Myelin Oligodendrocyte Glycoprotein Antibody-Associated Disease (MOGAD)

Edward Wilson, PhD1, Jamie McDonald, MD, MS1,2, Neda Sattarnezhad1,2, Esther Nie, MD, PhD1,2, Anna Tomczak, MS1,2, Julia Sumera, BS1,2, Yamuna Joseph, MBBS1,2, Sujatha Kalle, MBBS1,2, Tara Sarkar, BS1,2, Lucas Kipp, MD1,2, Christopher Lock, MD, PhD1,2, Jeffrey E. Dunn, MD1,2, Gayle Deutsch, PhD1, Luka Vlahovic, MD1, May H. Han, MD1,2

1 Department of Neurology and Neurosurgical Sciences, 2 Division of Neuroimmunology, Stanford University, 3 Providence Brain and Spine Institute, Portland, OR

Background
Neuromyelitis optica (NMO) and myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) present with optic neuritis, transverse myelitis and brain syndromes1,2. Cognitive dysfunction (CD) in NMO and MOGAD is not well recognized and understood3. Our recent work showed ~30% of NMO patients experience mild to moderate CD. We also observed pain, neurologic disability, immune therapy, level of education, and race/ethnicity directly influenced cognitive function, whereas gender, relapse rate, lesion location, serological status did not. The pattern and mechanism of CD in NMO and MOGAD in relation to other neuro degenerative disorders have not been investigated.

Objective
1. To investigate the pattern of CD in NMO and MOGAD patients using neuropsychological testing.
2. To investigate the molecular pathways involved in CD in NMO and MOGAD.

Methods
Neuropsychological analysis. We performed a single center, cross-sectional, retrospective analysis using ICD9/10 codes to search Stanford Research Repository (STARR) database to identify NMO and MOGAD patient who completed neuropsychological testing from 2017-2022. Plasma biomarker studies. Archived blood samples of NMO, MOGAD, and secondary progressive MS (SPMS) patients (disease control) enrolled in Project BIG (Stanford Brain, Immune and Gut Initiative) from 2019-2022 were studied. We used a high-throughput and fully-automated Lumipulse assay (Fujirebio Diagnostics, US, Malvern, PA) to quantify plasma peptide concentrations between 40). Plasma levels of pTau-181, A42, and A40 ratio (D) in SPMS, MOGAD and NMO patients.

Results

Conclusions
Twenty five percent of NMO and MOGAD patients experienced CD, however, <1% is diagnosed with MCI by formal testing. Multiple cognitive functions including language, memory and executive function were impacted in NMO and MOGAD patients. pTau-181 and A40 expression were significantly lower in the plasma of NMO and MOGAD patients compared to that of SPMS patients. A42 and A40 ratio were low in the plasma of NMO, MOGAD and SPMS patients.

Conclusion and Future Directions
A quarter of NMO and MOGAD patients experience cognitive symptoms. Multiple domains are impacted on cognitive testing, however, only a small subset meet the diagnosis of cognitive impairment. CD in NMO and MOGAD does not appear to have a strong association with Tau and Amyloid pathology based on blood biomarkers. Long-term follow up and correlative clinical, imaging and biomarker studies in combination with immunological assays will shed light on the disease pathogenesis and targets for therapy.

References

Drs. Sattarnezhad and McDonald (Sylvia Lawry Physician Fellowship funding, National MS Society). Support to institution: Dr. Kipp (Biogen and Genentech), Dr. Dunn (Pregenetic Diagnostic tool - Personal communications: Dr. Lock (Interrel Inc.), Diagnosis Early Relapse, Biogen, Sanofi, EMD Serono, Alexion Pharmaceuticals, BMS). Dr. Dunn (Alexion, Janssen, BMS, Genzyme), Dr. Han (Roche/Genentech, Alexion).

Acknowledgement
This work was supported by SPARK grant from the Sumaira Foundation.

Disclosure